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Abstract

In shielding calculations for high-energy accelerators it is nec-

essary to solve the nucleon-meson cascade equations numerically for

very large distances. For the case of a 10-GeV proton beam and a set

of quite special physical assumptions, an analytic solution has been

obtaiaed and compared with the numerical solution. The two solutions

are shown to be in excellent agreement for thicknesses as large as

30 collision mean free paths (,..2800 g/cm2 ) .

-*Research sponsored partially by the U. S. Atomic Energy Commission under
contract with the Union Ca.Coide Corporation and partially by the National
Aeronautics and Space Administration under NASA Order R-104.

**Present address: Arthur D. Little Company, &,ston, Massachusetts.

41



-3...

I. Introduction

In a series of reports numerical solutions to the equations describing

a one-dimensional nucleon-meson cascade have been given for a variety of cases

of interest in the shielding of manned space vehicles and high-energy acceler-

atcrs.l 4 In the case of accelerator shielding where very thick shields are

involved, the numerical calculations are quite extensive and the truncation

error could be excessive.

For a very special case an analytic (quadrature) solution to the cascade

equations has -recently been obtained. 5 In this parer the numerical solution

and the analytic solution are :ompared for the case of ,.ti 10-GeV proton beam

and are shown to be in excellent agreement after a shield thickness of 30 col-

lision mean free paths.*

In Section II the cascade equations are given. In Section III the assump-

tions used in obtaining the analytic solution are described and the solution is

given. In Section IV the comparison between the analytic and numerical so-La-

Lions is shown.

II. Cascade Equations

In writing the cascade equations we shall neglect neutral pions since

they decay very rapidly into two photons and photons are not includeO. Further-

more, no distinction will be made between positively and negatively charged

pions, and charged pion decay will be neglected.**
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Under- these circumstances the ore-dimensional cascade equations for the
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where

= neutron, proton, and charged pion, respectively,

0j (E) = arbitrary initial value flux spectrum,

0.
1J

. (E, r) = primary flux per unit energy range of particles of type j,

0sj (E,r) = secondary flux per unit energy range of particles of type j,

E = kinetic energy,

r = dimensionless distance variable defined by the relation r = ^o R,

p = density of medium, in g/cm3,

R = distance, in cm,



r

^\o = an arbitrary constant with dimensions g/cm2 vhich determines the

,illits in which r is measured,

TQj (L) - oANO of (E)'

No = Avogadro's number,

ori (E) = nonelastic cross section for particles of type j in the med:^um

being consid red,

A = a.;,omic weight of medium being considered,

T

J	 J

e,(E) = stopping cross section for particles of type J,

F.k(E . ; E) dE = the number o--'.' secondary particles of t^ ,pe J in the energy interval
J

E to E + dE produced by the nonelastic collision of a particle of

type k with energy E'.

III. Physical Assumptions and Analytic Solution

To reduce the equations to soluble form, we introduce the assumptions

Q  (E) = Q = constant, J =N, P , n ,

Si (E) = S = constant, J- P, TC ,

SN(E) = 0 ,

11 i ( EI ; E ) = 1 
J

7. ev(E^ -E) L-)(E' - E), i., j = N,P,n t.

(3.1)

(3.2)

(3.3)

(3.4)

ai, 7j , v = constant ,
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^(E ' - E) = 1	 r.' > E

= 0 E' < E

T'rese assumptions are., of course, introduced for their simplicity and represent

only very approximately a real physical system. in particular, Eq. (3.4) is not

very -realistic . With appropriate choice of v the E dependence may be u.cde ,

physi eally reasonable, but the resulting particle multiplicity varies irrach too

rapidly w I-th E' .

With the assumptions of Eqs . (3.1) to (3.4) a quadratLxe solution to

Eqs . (2.1) to (2.3) can be obtained. he details of obtaining tine  solution are

g; ver. in Ref. . 5, so oar^ly the solution itself will be given here. Pa_rthermore,

since only the case of a monoenergetic initial proton flux is of interest. here,

only the solution appropriate to this case will be given.

Using the init i al fluxes

0p (E) = 'Do S(Eo - E)

0 
J
•(E) = 0,	 ETJ = , n (3.5)

where Po = constant and Eo = energy of incident protons, the solution may be writ-

ten

0iP(E, r) = P	 -Qro S(Eo - E - Sr) e	 , (3.6)

(3.7)

(3.8)

0 SP (E, r) = Po ao yP e -Qr K(Eo - E,

0sn (E, r ) = Po a^ 7p a-Qr K(Eo - E, r)
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where
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0	 0

1
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( 3.10)
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• 10 
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PN=ON 7N C4	 Y

PC = (ap yp + a, 7" ) Q ,
	

(3.12)

and I0 and Il are the usual hypernolic Bessel functions.
t^
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IV. Comparison of Nunerical. and Analytic Solutions

In doing the numerical computations the constants appearing in the equa-

tions were chosen to be

= N, P, ,c

l

Q  = 1,

Si = 187.6 MeQ,

S  _ 0,

V = 7 x 10-4

a. = l0-L
a

7i = 1/V

^\o = 93.8 g/Cm2

= N, P, n ,

and the constants in the initial flux were chosen to be

Po - 1 pro./ cm2 sec

Eo = 10 GeV .

Before giving the comparison, it is perhaps worth while to make one

paint. in obtaining the numerical solutions all calculations are done in tex,

of a lethargy variable, u, defined by

rr E

U = log - IE

and in terms of lethargy

S (u) _ 
S

_ - S -u
Eo e

0
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i.e., the s , -Iopping power is not constant.*** Thus in doing the calculations a

variation of the stopping power in lethargy was taken into account.

From Eqs. (2.1) and (3.6) L follows that the calculation of the primary

flux in the present instance is quite trivial. i'he two calculations give for

all practical p azTj •ses the seine answer, and therefore a comparison of the primary

flux is not giver.

in Fig. 1 -the secondary neutron flux as a function of energy for various

r values is shown, and in Fig. 2 the secondary proton flux as a. function of energy

is shown. The solid curves represent the numerical solution, while the plotted

points represent the analytic solution. Because of the manner in which the con

stants are chosen, the comparison of the pion fluxes is exactly the same as the

comparison of the proton fluxes and is therefore not shown.

T-The two solixt.ions are in excellent; agreement at all energies and all r

values considered. A-c, tno very high energies (al_`_ curves go to zero at 10 GeV)

the numerical solution for the proton flux tends -to be slightly higher than the

analytic solution, but, sLice the spectr-w^:nn is decreasing so rapidly at these

energ; es, the error is of no practical importance

Acknowledgement
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Footnotes

*The IBM code .which was used in doing the numerical calculations reported here

is an improved version of the code used before: l 4 however, it does not give

appreciably different results from those obtained previously.

**This decay i:: neglected here because the analytic solution can be obtained

only under this assumption. In general, uur numerical solutions include this

decay and the resulting muon component.

fhe cascade equations written in terms of lethargy are given in Ref. 2.
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Figure Captions

Fig. 1	 Secondary Neutron Flux vs. 'Rrler g,y (Eo = 10 GeV). -- Numerical

solution; X analytic solution; r is measured in collision lengths

(= 93 .8 °/Cm2 ) .

Fig. 2	 Secondary Proton Flux v6. Energy (Eo = 10 GeV). — Numerical

solution; X analytic solution; r is measured in collision lengths

( = 93 . 8 g/crr 2 ) .
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